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Abstract  Keywords 

Besides various in-class assessments, there exist some standardized 

assessment tools that are administered in several countries, such as 

PISA (Programme for International Student Assessment) and 

TIMMS (Trends in International Mathematics and Science Study). 

The questions’ contents, type of responding, grading, and the 

analyses in these large-scale tests have been diversified in years. In 

this study, it was aimed to identify the abilities that are measured 

at PISA mathematics test in a single testing procedure and by 

utilizing the methods of analyses of Cognitive Diagnostic Model 

(CDM) as well as Signal Detection Theory (SDT), which have not 

been used so far in the assessment of these abilities. Therefore, a 

randomly selected sample of 6th-grade students (N=230) in Izmir 

was tested with a PISA-equivalent 12-item mathematics test, where 

the items are graded dichotomously (correct vs. incorrect). CDM 

estimates were calculated by using the Deterministic Input Noisy 

Output and Gate (DINA) Model. The participants were asked to 

report whether they thought they could solve the question 

correctly, guess even if they thought they could not solve the 

question, and then, rate their confidence levels on the correctness 

of their answers in turn so as to allow us to measure their 

“metacognitive monitoring performance” with the SDT method, 

which refers to the ability to differentiate correct and incorrect 

responses. In short, a better metacognitive monitoring performance 

was obtained by measuring how well once could differentiate their 

correct and incorrect responses with the observation of they prefer 

reporting and then giving high confidence levels to the actually 

correct responses and prefer passing to give an answer yet rate 

lower confidence levels to the actually incorrect responses given as 

pure guesses. The results showed that CDM fits well to the 

assessment of PISA test and those who were better at the ability of 

“reasoning and developing strategies” in particular among four 

possible abilities detected with CDM (“representing and 

communicating”, “mathematization”, “reasoning and developing 

strategies”, “using symbolic and technical language”) had also 
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better metacognitive monitoring performance. The present study, 

therefore, contributes to the research that investigates what 

features the ability of better differentiating correct and incorrect 

responses are actually linked. Based on the results, it is suggested 

that a better metacognitive monitoring ability is linked to having a 

better ability of “reasoning and developing strategies” in 

particular. Additionally, it is suggested that measuring 

metacognitive monitoring performance at PISA -or even any other 

possible tests- with the SDT calculation method, that has a 

relatively straightforward testing procedure, may yield various 

estimates for the students’ abilities measured at the test as well as 

their related higher-order abilities. 

Introduction 

The primary objective of the assessment tools of academic performance is to evaluate the level 

of learners’ performance as accurately and precisely as possible. For this purpose, numerous 

measurement strategies and approaches are used in the educational assessment to detect, for instance, 

cognitive abilities and academic success (e.g., Bean & Peterson, 1998; Wragg, 2001; Lindblom-Ylanne, 

Pihlajamaki, & Kotkas, 2006). Various standard tests have also been used in the performance 

assessment, which is a critical element in education, along with some largely used in-class assessments. 

For instance, some standard tests are used in many countries to identify how the students’ performance 

in mathematics, science, and language differs between countries and to guide how the educational 

policies should be directed. The best examples for such tests can be PISA, which was administered first 

in 2000 and have been under development in terms of its content and grading since then, as well as 

TIMSS.  

In this research, which focuses specifically on the mathematical abilities in the PISA test, it was 

aimed at determining the level of proficiency shown by the 6th-grade students in the PISA mathematics 

test by simultaneously using two methods together that have not been used in the assessment of PISA 

test. The first method is of Cognitive Diagnostic Model and the second one is the method based on Type-

2 Signal Detection Theory. The present study targeted to identify the students’ mathematical abilities 

with the CDM’s method and to reveal the relationship between students’ cognitive abilities measured 

at the test and their metacognitive monitoring performance, referring to one’s ability to differentiate 

correct and incorrect responses (e.g., Higham, 2002; Higham & Gerrard, 2005; Güzel & Higham, 2013; 

see also, Karakelle & Saraç, 2010)1. In short, the objective was to determine which latent classes that are 

expected to be defined for the mathematics ability measured at PISA test normatively are related to the 

metacognitive monitoring ability in a singly testing procedure and with the calculation methods of 

CDM and Type-2 SDT. The present study is expected to yield a unique contribution to the literature 

since the existing literature seems to be lacked in terms of not revealing direct observations regarding 

how well the students are good at recognizing their responses’ correctness at PISA tests, which is 

obtained with Type-2 SDT calculations.  

The following sections detail the abilities measured at PISA mathematics test and the 

calculations methods of CDM and Type-2 SDT respectively.  

                                                                                                                         

1 Since the current study follows the basic assumptions of the Type-2 SDT and so uses its specific calculation methods, it prefers 

using the term, “metacognitive monitoring” (see also, Higham, 2011) that is used in this specific literature in a standard way 

instead of using other available terms such as “metacognitive calibration” or “metacognitive accuracy” (see also, Pieschel, 2009).  
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Mathematical Abilities at PISA 

There exist several approaches regarding the “mathematics literacy” (OECD, 2003), which refers 

to one’s ability to identify and comprehend at mathematics and to make well-grounded decisions 

comparable to their ages as to how mathematics plays a role in their current and future daily, social, 

and work lives (e.g., Stacey & Turner, 2014). However, PISA and TIMMS investigations use more 

comprehensive and assessment-based definitions by using the question items that cover possibly all 

main abilities of mathematics (Albacete et al., 2016; Gierl, Alves, & Majeau, 2010). The PISA test, for 

instance, which is the main investigation topic of the current study, is an assessment system that is 

administered once in every three years since 2000 among OECD (The Organization for Economic Co-

operation and Development) countries to assess the mathematics and science literacies and the language 

abilities of the students who are 15-years old (OECD, 2010). These capabilities subsumed under seven 

categories are defined as are displayed in Table 1 (OECD, 2019). 

Table 1. The Capabilities Measured at PISA Mathematics Test 

Communicating 

− Read, decode, and make sense of statements, questions, tasks, objects, or 

images, to form a mental model of the situation. 

− Articulate a solution, show the work involved in reaching a solution, and/or 

summarize and present intermediate mathematical results. 

− Construct and communicate explanations and arguments in the context of the 

problem. 

Mathematising: 

− Identify the underlying mathematical variables and structures in the real-world 

problem, and make assumptions so that they can be used. 

− Use an understanding of the context to guide or expedite the mathematical 

solving process, e.g. working to a context-appropriate level of accuracy. 

− Understand the extent and limits of a mathematical solution that are a 

consequence of the mathematical model employed. 

Representation: 

− Create a mathematical representation of real-world information. 

− Make sense of, relate, and use a variety of representations when interacting 

with a problem. 

− Interpret mathematical outcomes in a variety of formats in relation to a 

situation or use; compare or evaluate two or more representations in relation to 

a situation. 

Reasoning and 

argument: 

− Explain, defend, or provide a justification for the identified or devised 

representation of a real-world situation. 

− Explain, defend, or provide a justification result processes and procedures used 

to determine a mathematical result or solution. 

− Connect the pieces of information to arrive at a mathematical solution, make 

generalizations or create a multi-step argument 

− Reflect on mathematical solutions and create explanations and arguments that 

support, refute, or qualify a mathematical solution to a contextualized problem. 
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Table 1. Continued 

Devising 

strategies for 

solving problems 

− Select or devise a plan or strategy to mathematically reframe contextualized 

problems 

− Activate effective and sustained control mechanisms across a multi-step 

procedure leading to a mathematical solution, conclusion or generalization 

− Devise and implement a strategy in order to interpret, evaluate and validate a 

mathematical solution to a contextualized problem 

Using symbolic, 

formal and 

technical language 

and operations: 

− Use appropriate variables, symbols, diagrams, and standard models in order to 

represent a real-world problem using symbolic/formal language 

− Understand and utilize formal constructs based on definitions, rules, and 

formal systems as well as employing algorithms 

− Understand the relationship between the context of the problem and 

representation of the mathematical solution. 

− Use this understanding to help interpret the solution in context and gauge the 

feasibility and possible limitations of the solution 

Using 

mathematical 

tools 

− Use mathematical tools in order to recognize mathematical structures or to 

portray mathematical relationships. 

− Know about and be able to make appropriate use of various tools that may 

assist in implementing processes and procedures for determining mathematical 

solutions 

− Use mathematical tools to ascertain the reasonableness of a mathematical 

solution and any limits and constraints on that solution, given the context of the 

problem. 

Source: OECD, 2019. 

The capabilities enlisted in Table 1, for instance, reasoning and argument, formulating 

situations mathematically can be measured by arranging the questions’ contents, and how the students 

approach the questions, which problem-solving strategies they use, or which misconceptions they have 

on the items can also be measured by involving open-ended questions (Lie, Taylor, & Harmon, 1996). 

In other words, arranging the question contents or diversifying the testing procedure (e.g., involving 

both multiple-choice and open-ended questions together) render measuring cognitive as well as the 

metacognitive performance of the students possible.  

Of identifying metacognitive abilities, for instance, it has been shown that students’ reading 

abilities are highly linked to their metacognitive abilities (Myers & Paris, 1978; see also, White & 

Frederiksen, 2005). Additionally, Ardelt, Shiefele, and Schnieder (2001) showed that metacognitive 

knowledge on understanding the material that is read is also closely related to the students’ reading 

ability (i.e., test score) at PISA 2000 test. The same relation has also been observed in the proceeding 

administrations of PISA tests, such as at PISA 2009 (e.g., Ardelt & Schneider, 2015). As an alternative 

assessment method, a scenario-based metacognitive knowledge test has also been developed to be used 

for measuring the students’ higher-order cognitive abilities such as learning and problem-solving 

strategies (Handel, Ardelt, & Weinert, 2013).  

Despite the existence of the above-mentioned assessment methods, the investigations of cross-

culturally administered PISA tests assess the students’ metacognitive abilities in separate questionnaires 

while grading their cognitive performance right in the test (see also, Maag Merki, Ramseier, & Karlen, 

2013; Wirth & Leutner, 2008). Therefore, there seems to be a lack of research that measures the students’ 

metacognitive abilities without a need of administering any related scales along with the test. However, 

the study of Higham (2007) that investigated metacognitive abilities at Scholastic Aptitude Test (SAT) 
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emerges as an exception to this scarcity. In this study, Higham compared the specific SDT methods with 

the calculation methods suggested by Koriat and Goldsmith (1996).His findings confirmed that 

“regulation accuracy” referring to the withholding tendency of the respondents to answer to yield a 

higher number of reported correct answers seems to be measured more accurately by the SDT’s methods 

compared to the alternative offered as a threshold model could not.  

In this current study, it was aimed at using the calculation method offered by Higham (2007) 

specifically in the assessment of the PISA mathematics test for the first time. Hence, along with scoring 

the abilities at involved in PISA mathematics, it was targeted to detect metacognitive monitoring 

performance of the students, referring to one’s ability to differentiate their correct responses from 

among the incorrect ones with the calculation methods of SDT detailed in the following section, and to 

reveal the relationship between this performance and the abilities (i.e., latent classes) that are to-be-

obtained by the CDM’s method.  

There are numerous studies of research on “source monitoring” that reveals whether 

knowledge is produced in memory (false memory) or it is retrieved from a memory storage containing 

the true knowledge of an actual event (true memory) and on how aging affects the cognitive abilities 

(e.g., Baltes, Staundinger, & Lindenberger, 1999). However, these studies do not seem to directly 

investigate or study metacognitive monitoring performance as a variable. In other words, it not clear 

why some people are good at this ability yet others are not. In this regard, as was suggested by Dunlosky 

and Tauber (2001), metacognitive monitoring performance declines with age while aging is also 

observed with some declines in, for instance, short term memory and episodic memory performance, 

and in problem-solving abilities. However, it does not seem clear as to whether cognitive abilities 

decline due to gradually poorer metacognitive abilities observed by aging since declines in the cognitive 

and metacognitive abilities are measured simultaneously. The current study, however, differs from the 

existing research in the way that it investigates which sub-abilities that the monitoring performance 

might be closely linked and that it aims to classify the students’ cognitive abilities with CDM and 

compares the  

The present study, therefore, differs from the existing research that has been run particularly in 

the education field in the way that it aimed at revealing which (sub-)capabilities are linked to the 

metacognitive monitoring and to study how the students’ metacognitive abilities differ with the 

hypothesis testing while classifying their cognitive capabilities by the CDM methods both in a single 

testing procedure and in the same test.  

The following sections lay out the signal detection theory and cognitive diagnostic model as 

used in the current study. 

Signal Detection Theory and Metacognitive Monitoring  

Metacognition, defined as “the knowledge about knowledge” by Flavell (1979), has taken the 

interest of many researchers. The researchers can measure metacognitive judgments by various 

standard methods such as ease of learning (EOL), judgment of learning (JOL), feeling of knowing (FOK), 

etc. The common denominator of these studies and their results’ main output is that they allow 

measuring how well individuals are aware of their knowledge objectively. In this vein, it seems critical 

for the studies that investigate cognitive abilities along with metacognitive performance to detect what 

level of awareness individuals have on their responses’ correctness beyond studying how well 

respondents are good at knowing the correct answer per se (e.g., quantifying the number of correct 

answers given at a test). In other words, measuring the awareness of the respondents on their answers’ 

correctness can provide the researchers with further parameters beyond counting the number of correct 

responses reported.  

Though the measurement of metacognition can be applied by various methods (e.g., the 

methods to quantify the judgments given for the ease of learning, feeling or knowing, etc.), a particular 

method named Type-2 SDT, which is fundamentally based on the Green and Swets’ (1966) Signal 

Detection Theory, provides a standard alternative for this measurement. Based on the basic assumptions 
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of the SDT, participants’ metacognitive monitoring performance can be measured by calculating their 

“hit” and “false alarm” rates as well as their “response criteria”, where the latest refers to how strictly 

or leniently one behaves when responding. Signal Detection Theory that is based on “psychophysics”, 

referring to a field that focuses on the relation between physical stimulus and its sensational and 

perceptual reflections (Luce & Krumhansl, 1988), can be categorized into two as Type-1 and Type-2 SDT 

(e.g., Higham, 2002; Higham & Tam, 2005). In standard Type-1 SDT procedure, the respondent is asked 

to decide whether they detect the signal buried in, for instance, a white noise (“Yes”/”No”). The signal 

may exist as buried in the noise in some trials, yet it does in fact not exist in some other trials. According 

to the theory, it is assumed that the trials containing the signal and those having no signal at all construct 

two normal distributions and the participants tend to say “Yes” (i.e., “Yet! It exists”) if the trial is above 

the response criterion set and says “No” (i.e., “No! It does not exist”) if the trial is below this criterion. 

The probabilities of the participants’ decisions given as “yes”/“no” can be calculated concerning the 

conditions where the signal is present or absent; see Table 2. According to this contingency, the hit rate 

refers to the number of “yes” decisions given out of the total number of the trials where the signal was 

present. The false alarm rate, however, is the number of “yes” decisions given by the participant out of 

the total number of trials where the signal was absent. The participant can also give a “no” decision 

correctly in the trials where the signal is absent. When the rate measured in such trials is called the 

correct rejection rate, the participant may also make a “no” decision in the trials where the signal is 

present. The latest one is called miss rate (Abdi, 2007). In short, this observation called Type-1 focuses 

on whether the participant who plays a machine-like role passively detects the existence of the signal 

correctly and this signal detection method is defined as a stimulus-contingent one (Higham & Tam, 

2005).  

Table 2. Four possible types of responses that can be obtained according to the Type-1 Signal 

Detection Theory 

 Decision (participant’s response) 

Reality “Yes” “No” 

Signal present Hit (a) Miss (b) 

Signal absent False Alarm (c) Correct rejection (d) 

Note. hit rate = a/(a+b); false alarm rate = c/(c+d); miss rate = b/(a+b); correct rejection rate = d/(c+d).  

Source: Abdi, 2007. 

Despite that the rates’ names are the same, their features in the Type-2 signal detection are 

different. In this type, for instance, the respondent is assumed to generate a list of candidate answers in 

their minds containing correct and incorrect answers. In other words, it is assumed that a generation of 

candidates executed is executed before reporting the answer instead of the knowledge (i.e., the 

response) is not directly retrieved from memory like a vacuum (e.g., Bahrick, 1970; Kintsch, 1970; see 

also, Watkins & Gardiner, 1979). Assuming that correct and incorrect candidates normally distribute in 

terms of their memory strengths which thereby vary their confidence levels concomitantly, Type-2 SDT 

aims at quantifying the respondent’s ability to discriminate their correct answers from among incorrect 

ones by measuring the divergence between the mean values of these distributions (e.g., d’). The report 

criterion in Type-2 SDT, however, is defined as the criterion above which the participant reports the 

generated answers and below which they withhold the generated candidates. In other words, generated 

answers are tended to be reported if they are above the report criterion and withheld if they are below 

this criterion set. As inferred from this assumption, participants are asked to decide whether “they wish 

to answer” or “do not wish to answer the question” (e.g., “report” or “pass”). Participants are still asked 

to make their best guesses even if they prefer not to answer (i.e., “pass”). In these cases, for instance, the 

participant might have inserted a high report criterion so that might have chosen the “pass” option for 

a potentially correct answer. That is, it is expected for this participant that they tend to report only those 

answers on which they are highly confident on the responses’ correctness. Lastly, participants are asked 

to rate their confidence on the correctness of their responses on a Likert-type scale. A contingency table 

for the type-2 SDT, in short, is as follows: 2 (response: reported vs. withheld) x 2 (candidate answer: 
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correct – incorrect) (see also, Higham & Tam, 2005, p. 599). As the distribution of the incorrect answers 

generated (Figure 1(b), the distribution on the left) starts with the lowest confidence level, the 

distribution of the correct answers generated (Figure 1(b), the distribution on the right) disperses with 

higher confidence levels. To summarize, one’s ability to discriminate correct and incorrect responses is 

a function of how much further apart the distributions of correct and incorrect responses generated as 

well as at what level their report criteria are set (e.g., stringent or lenient). Therefore, Type-1 SDT is 

defined as a stimulus-contingent SDT whereas Type-2 SDT is a response-contingent one (Higham, 2002, 

2011). 

a) possibilities that can be obtained according to the Type-1 SDT 

 
b) possibilities that can be obtained according to the Type-1 SDT 

 
Figure 1. Probabilities that can be obtained according to Type-1 and Type-2 SDT  

(Source: Higham & Arnold, 2007) 

It is possible to quantify the level of metacognitive monitoring ability after calculating the hit 

and false alarm rates emerge in the two distributions of the incorrect and correct responses generated. 

Researchers can calculate the distance between the means of these two distributions with, for instance, 

d’ (d prime= Z[hit rate] - Z[false alarm rate]). This value can also be displayed on a graphic with the ROC 

(receiver operating characteristics) method. For this purpose, participant’s hit and false alarm rates 

ranging between “0.00” and “1.00” at each cumulative confidence level are calculated and the 

intersections of these rates at the same cumulative confidence level are marked on a scatter plot; see 

Figure 2. The area emerging between the diagonal line that indicates a pure guess (i.e., indicates a 

reporting that can already be correct with a %50 chance) and the line connecting each intersection points 

can be calculated. The larger is the area as well as has a positive value, the higher is the area under the 

curve value of this participant (so that the d’ value), which indicates one’s ability to concordantly detect 

correct responses as correct and incorrect responses as incorrect. The values having a negative sign, 

however, indicates that the participant decides their correct responses as incorrect yet considers their 

incorrect responses as correct. Figure 2 displays a ROC of a hypothetical case that can be used to calcite 

their area under the curve value.  
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Figure 2. Receiver Operating Characteristics (ROC) that is drawn to calculate the area under the curve 

for a hypothetical case whose confidence ratings varied between “1” (not at all confident correct) and 

“5” (completely confident correct). 

As displayed in Figure 2, the area under the curve is the area that appears between the broken 

line and the diagonal line on the graph. The highest intersection point on the broken line (1.00-1.00) is 

the intersection point of the hit and false rates calculated for the cumulative confidence level “1+” (1 and 

above) and the point counted as the 5th one from the top in the graph is the intersection point where the 

hit and false alarm rates calculated for the confidence level “5 only” (e.g., 0.55 hit & 0.25 false alarm 

rates). As can be inferred from the diagram, the broken line will be gradually smoother as the Likert-

type rating has a higher number of anchors so that the monitoring performance value will be measured 

more precisely.  

Cognitive Diagnostic Model  

The CDM used in the study aimed at classifying the students accurately whether they have the 

measured ability or do not have this ability by calculating the item parameters and the a priori values 

of the features (i.e., abilities) that are measured in the test. The level of how well the features measured 

in the test are represented by the test items is defined when the test is being developed via using the 

cognitive diagnostic model’s calculations, which are based on both the latent class analyses and the 

item-response theory (IRT) approach. The results of the analyses classify the students in terms of their 

abilities. In short, the main objective in these analyses is to accurately determine which latent classes the 

students are in (Leighton & Gierl, 2007; von Davier, 2014).  

Deterministic Input Noisy and Gate (DINA) Model developed by Haertel (1989) is a latent class 

analysis just like many other Cognitive Diagnostic Models (e.g., Junker, 1999; Junker & Sijtsma, 2001; 

MacReady & Dayton, 1977). The model is based on the relation between the items and the features and 

the model must work well to accurately determine the features that need each item in the test is 

responded correctly ( de la Torre & Chiu, 2015; de la Torre & Lee, 2010). Shortly, two latent classes for 
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a to-be-developed or already administered test can be determined by, for instance, “k” number of 

features. For instance, the respondents can be classified into eight latent classes in a test where only 

three features are measured.  

The possible classes for these three classes can be ordered as “000”, “100”, “010”, “001”, “110”, 

“011”, “101”, and “111”. Whereas those who show no features at all are in the first-order class (“000”), 

those who show the first and the third features are in the seventh-order class (“101). The critical point 

in this analysis is that the decision whether a respondent has or does not have the designated feature is 

completely probabilistic. The decision whether a respondent (e.g., a student or learner) is in the class of 

“0” or “1” (i.e., having this defined feature or not, respectively) is a probability value and this value has 

conventionally “.50” threshold although it can be defined by the researcher. In other words, if the value 

of one’s probability to have the given feature is below “.50”, they are classified under class “0” (i.e., the 

student does not have this feature), and if this value is equal to or above the threshold, then the student 

is classified under the class “1” (i.e., the student has the defined feature) (see also, Başokçu, 2012, 2014; 

de la Torre & Douglas, 2004; de la Torre, 2008). 

The mathematical abilities, being one of the independent variables in the present study, are 

taken as categorical rather than a continuous variable and the decisions whether the students had or 

did not have these features (i.e., abilities) are given by the DINA Model, which is one of the available 

methods of the CDM methods. 

Method 

Participants 

The sample is composed of 6th-grade students who are enrolled in a public school in Bornova, 

Izmir province. Two-hundred-and-thirty students (110 male, 120 female) who constituted a totally 

seven same-grade sections in the school volunteered to participate in the study. The analyses on the test 

and the item parameters as well as the latent class analyses measured by the DINA model are analyzed 

with the data collected from these 230 students. The analyses on the monitoring performance, however, 

were analyzed among 130 students (58 male, 72 female) who were randomly selected from the total 

sample and who were administered monitoring procedure (e.g., they solved the test with “report/pass” 

option and then giving confidence ratings for their responses). Since 10 students handed in the test with 

a bulk of missing values, they were excluded from the AUC analyses. Therefore, AUC analyses were 

run on the data gathered from the remaining students (N=120). The number of students who were 

randomly selected and were administered with the monitoring procedures is homogeneous among the 

sections. The test sample and the experimental sample did not differ in terms of their test scores (M=2.41; 

SD=2.28; M=2.44; SD=1.83, respectively). 

Procedure 

The study was conducted on a pilot sample group of the general sample of the TUBITAK Project 

No. 115K531. The whole procedure was run in coordination with the Directorate of National Education 

of Izmir Province. The students were provided with the parent consent forms by the school 

administration and only those students whose parents gave their consents were taken to the study. A 

limited number of students whose consents were not taken were still in the classroom while the test was 

being administered and they were asked to do a reading activity meanwhile. The 12-item PISA-

equivalent mathematical test, which is detailed in the “Materials” section, was simultaneously 

administered to totally 230 6th-grade students in their classrooms. The officers handed in the instructions 

and the test booklets to the project assistants, test administrators, and the invigilators. The data collected 

were posted to the project team by the officers after they inserted each filled-in test booklet in sealed 

envelopes.  

Materials  

The study utilized a 6th-grade level mathematics test that was composed of 12 items and aimed 

at measuring the mathematical abilities at the PISA test. The test development and the detection of 

measured abilities processes are implemented with the field experts in mathematics education. 
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Considering the item types, the subjects, and the grade level, the project researchers, advisors, and the 

teachers who had expertise in the fields together subsumed the PISA capabilities adapted for the study 

under four categories. The categories entitled “communication and association”, “mathematization”, 

“reasoning and developing strategy”, and “using symbolic and technical language” are defined as 

follows (Başokçu, 2019): 

Communication and association: The ability that covers associating the mathematical language 

with daily language and symbols and interpreting the accuracy and meaning of the mathematical ideas. 

It also covers associating mathematical concepts with each other, other disciplines, and with the real 

world.  

Mathematization: It refers to the activities such as modeling, structurally presenting, identifying 

with assumptions, formulating a problem in mathematical form, gaining and interpreting mathematical 

outputs of an established construct or a model.  

Reasoning and developing strategy: It is the process of gathering new information by using the 

specific mathematical tools (e.g., symbols, definitions, relations, etc.) and thinking methods (e.g., 

induction, deduction, comparison, generalization, etc.) with the information in hand. Developing 

strategy refers to selecting and designing a strategy to use mathematical knowledge and abilities in 

problem solving.  

Using symbolic and technical language: In terms of the mathematics literacy, using the ability 

of symbolic and technical language covers the behaviors of understanding and interpreting the 

symbolic displays of the mathematical contents that are defined with the mathematical rules.  

The item parameters, the above-mentioned mathematical abilities that were measured by the 

test items, and the DINA model item parameters are displayed in Table 3 (Table 3(a), 3(b), 3(c), 

respectively). 

Table 3. Item parameters of the test material (a), mathematical abilities measured by the test items (b) 

(0=the item does not measure the defined ability; 1= the item measures the defined ability), and DINA 

model item parameters (guess & slip) and the error scores of these parameters (c) 

a) Item parameters of the test material  

 Test items 
 1 2 3 4 5 6 7 8 9 10 11 12 

Difficulty 0,28 0,12 0,02 0,37 0,33 0,11 0,24 0,07 0,35 0,28 0,05 0,18 

Discrimination 0,46 0,26 0,06 0,58 0,47 0,27 0,37 0,16 0,58 0,42 0,12 0,35 

Item-test correlation 0,47 0,51 0,51 0,53 0,45 0,68 0,48 0,55 0,55 0,48 0,65 0,5 

b) Mathematical abilities measured by the test items 

Communication and 

association  
1 1 0 1 1 0 0 0 0 1 1 1 

Mathematization  0 0 1 0 0 1 1 1 1 0 0 0 

Reasoning and developing 

strategy 
1 1 1 0 0 0 1 1 1 0 1 0 

Using symbolic and 

technical language 
0 0 1 1 1 1 0 0 1 0 1 0 

c) DINA Model item parameters and standard errors of the measurement instrument  

Guess (G-par) 0,21 0,04 0,02 0,16 0,33 0,07 0,12 0,04 0,31 0,10 0,03 0,17 

Guess standard error 0,04 0,03 0,01 0,05 0,04 0,03 0,05 0,02 0,04 0,06 0,01 0,05 

Slip (S-par) 0,21 0,25 0,54 0,06 0,26 0,46 0,41 0,45 0,38 0,24 0,49 0,32 

Slip standard error 0,10 0,10 0,05 0,08 0,07 0,11 0,14 0,06 0,13 0,07 0,07 0,05 

 

  



Education and Science 2021, Vol 46, No 205, 221-238 O. T. Başokçu & M. A. Güzel 

 

231 

The item difficulty mean was 0.20, the discriminability mean was 0.34, and the mean of item-

test correlations was 0.53; see Table 3(a). The test’s KR-20 reliability coefficient was 0.73. This value 

indicates high reliability for a 12-item test. Test’s validity and reliability were measured by the Item 

Response Theory (IRT) analyses. The analyses were run by 2-Parameter Logistic Model. The test 

information function and the item characteristics curves that displayed ogive functions were examined, 

and they indicated that the developed test measured the variable that the test intended to measure with 

high discriminability and validity. Additionally, once the multi-dimensional feature of the DINA model 

is considered, it was shown that the Classical Test Theory (CTT) and IRT evidence given for the test 

discriminability and validity should be used as a comparison criterion.  

The process of matching (i.e., relating) items with the measured abilities are determined by 

considering expert opinions, and the related Q matrix was constructed as shown in Table 3(b). This 

process resembles the theoretical approach that matches the items with the dimensions in the test 

development process. However, the difference of CDM is that any single item can be matched with 

more than one feature (i.e., dimension) in the Q matrix. This matrix displays the fundamental a priori 

and theoretical relations that are used for the CDM analyses. DINA model item parameters and the 

latent classes of the respondents who took the test can be identified by using this matrix. As displayed 

in Table 3(b), seven items measured the “communication and association”, five items measured the 

“mathematization”, seven items measured the “reasoning and developing strategy”, and six items 

measured “using the symbolic and technical language” abilities. The fact that one item can be matched 

with more a single feature, which is the distinctive feature of CDM, is shown in Table 3(b). In other 

words, whereas only two items measured “one” feature, seven items measured “two” features, and 

three items measured “three” features, which is the depiction that shows the model’s multi-dimensional 

nature. As seen in Table 3(c), “guess” parameters (G-par) are low. “Slip” parameters (S-par), however, 

increase particularly with the items that have higher difficulty values. While this result is something 

expected for CBM, it seems the model fits well once the general scores and their means are considered. 

Also, the relative indexes for the model’s fitness were calculated for the Akaike and Bayesian 

Information Criteria (AIC & BIC) as 2535.38 and 2669.46, respectively.  

The participants’ metacognitive monitoring performance was scored individually by using the 

area under the curve (AUC) method, shown in Figure 2. The participants were asked to read the 

questions first and then choose one of the following options for each item: “I believe I can solve the 

question correctly” vs. “I believe I can’t solve the question correctly”. After solving the questions (and 

after making their best guesses even if they passed the questions), the participants also rated their 

confidence levels on the correctness of their answers on a 5-anchor Likert-type scale (1= ”not at all 

confident correct”; 5= “completely confident correct”). All hit and false alarm rates at each cumulative 

confidence levels (i.e., “1 & above”, “2 & above”, “3 & above”, “4 & above”, and “5 only” confidence 

levels) were calculated for each of the participants individually and then their ROC curves were drawn, 

by which the area under the curve appearing under this ROC curve and the diagonal line shown in 

Figure 2 could be measured. For instance, the hit rate at “1 and above” confidence level is the rate of the 

number of correct responses reported by the participant out of the total number of correct responses 

that were reported and passed together no matter which confidence level they were rated with. 

However, when calculating the hit rate at “2 and above” confidence level, the correct responses which 

were rated with a confidence level of “2” or “any level above this” were taken into the calculation. On 

the other hand, the false alarm rate at “1 and above” confidence level is the rate of the number of 

incorrect responses reported out of the total number of incorrect responses that were reported or passed 

no matter which confidence level they were rated with. Likewise, when calculating this rate at “2 and 

above” confidence level, only those incorrect responses which were rated with a confidence level of 2 

or any other above this level were considered (see also, Higham & Tam, 2005). As a result, each hit and 
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false alarm rates at each cumulative confidence were calculated for each of the participants separately 

via the above-mentioned formulae, and the sizes of the AUCs calculated were defined as the 

participants’ metacognitive monitoring performance (i.e., the ability to discriminate correct and 

incorrect responses). 

Results 

The data gathered in this study that investigated the mathematical abilities of the 6th-graders at 

a PISA mathematics test were analyzed by the latent class analyses based on the DINA model and have 

not been used in evaluating this test so far. The CDM packages developed for the Ox Edit and R 

programs were used in the analyses (George, Robitzsch, Kiefer, Groß, & Ünlü, 2016). The metacognitive 

monitoring scores, however, were obtained by the Type-2 signal detection theory’s calculation methods 

that have been used only in the SAT so far (Higham, 2007) and the area under the curve calculations 

(see also, “Signal detection theory and metacognitive monitoring” section and Figure 1). The posterior 

probabilities of the participants’ latent classes, the observed probabilities of the classes, the mean correct 

answers in the latent classes, and their metacognitive monitoring scores are shown in Table 4.  

Table 4. The posterior probabilities belonging to the latent classes classified with DINA, the means of 

correct answers in the latent classes, and the metacognitive monitoring scores of these classes 

measured with area under the curve (AUC) calculations 

Latent class* 
Posterior 

probability 

Observed 

probability 

Correct  

(mean)  

Metacognitive monitoring 

ability (AUC) 

"0000" 0,0658 0,187 1,12 0,16 

"1000" 0,0631 0,106 2,50 0,14 

"0100" 0,0658    

"0010" 0,0658    

"0001" 0,0658 0,132   

"1100" 0,0631 0,081 1,75 0,13 

"1010" 0,0538 0,074 2,50 0,18 

"1001" 0,0644 0,076 2,21 0,13 

"0110" 0,0572 0,052 2,21 0,22 

"0101" 0,0623    

"0011" 0,0658    

"1110" 0,0476 0,084 4,67 0,34 

"1101" 0,0527 0,087 3,89 0,34 

"1011" 0,065    

"0111" 0,0482    

"1111" 0,0936 0,121 6,36 0,41 

* Latent classes (“XXXX”) are displayed with four digits and these digits refer to “communication and 

association”, “mathematization”, “reasoning and devising strategies”, and “using symbolic and technical 

language”, respectively. The digits “1” and “0” indicate whether the designated capability exists or does not exist, 

respectively. For instance, the “1010” code indicates that this latent class coded as “1010” has the abilities of 

“communication and association” and “reasoning and devising strategies” both yet it does not show the abilities 

of “mathematization” and “using symbolic and technical language”. 

The posterior probability values displayed in Table 4 are the values that belong to the values of 

the whole latent classes that are calculated in terms of the model’s parameters. However, not all of the 

latent classes can be observed in every sample. As seen in Table 4, only nine latent classes could be 

observed in the sample out of totally 16 possible latent classes. The posterior probabilities of the latent 

classes are close to each other as again seen in Table 4. This is accepted as an indicator that shows the 

defined features (i.e., abilities) are independent of each other (Chen, de la Torre, & Zhang, 2013; Huo & 

de la Torre, 2014). As seen in Table 4 again, the higher is the number of features observed in the latent 
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classes (in other words, the total number of “1” showing the defined feature is involved in the class 

increase), the higher are the test means as well as the monitoring scores of the latent classes. For instance, 

the latent class coded “0000” which showed no ability in the test had 1.12 correct scores on average 

whereas the latent class coded “1111” which showed all of the abilities in the test obtained a mean of 

6.36 correct responses from the same test. The monitoring performance of the group (i.e., the latent class) 

who showed no abilities in the test was significantly (.16) lower than the group who showed all of the 

abilities (.41); t(50)=3,59, p<0,001. A series of independent t-test analyses were run between the 

conditions of having the ability or not having this given ability to detect which features differ in terms 

of metacognitive monitoring performance; see Table 5.  

Table 5. Independent-samples t-test results when the groups that either have the designated ability (1) 

or not (0) are compared in terms of their metacognitive monitoring performance (AUC scores) 

 Whether having the ability or not n M s t df p 

Communication and 

association 

1 60 ,23 ,29 ,953 118 ,343 

0 60 ,18 ,28    

Mathematization 
1 40 ,28 ,27 1,823 118 ,071 

0 80 ,17 ,29    

Reasoning and 

developing strategies 

1 42 ,30 ,30 2,914 118 ,004 

0 78 ,15 ,26    

Using symbolic and 

technical language 

1 44 ,23 ,31 ,945 118 ,347 

0 76 ,18 ,27    

Note. n=number of the participants; M=means of the monitoring scores; s=standard deviation, df= degrees of 

freedom; p=alpha value 

According to the t-test results displayed in Table 5, having the ability of “reasoning and devising 

strategies” yielded higher monitoring performance than those who did not show this ability. In other 

words, the mean of the monitoring scores of those students showing reasoning and devising strategies 

ability is significantly higher (.30) than those students who did not show this ability (.15) with a 

medium-size effect size (Cohen’s d=.55). However, the students did not differ in terms of their 

monitoring scores concerning whether they showed the abilities of communication and association, 

mathematization, and using symbolic and technical language. 

Discussion, Conclusion and Suggestions 

CDM analyses allocate students to the latent classes in terms of relating the test items to the 

features measured by the test by considering the responses given (Henson & Douglas, 2005). Structuring 

the test and its features is also conducive to lay out a measurement model for the designated latent 

classes (DiBello, Roussos, & Stout, 2006). Therefore, CDM parameters inform the researchers regarding 

the model’s fitness (Hu, Miller, Huggins-Manley, & Chen, 2016). Based on the findings of the current 

research, the CDM parameters and the posterior probabilities of the latent classes indicate that the 

fitness level of the measurement model constructed by considering mathematical abilities is valid. This 

finding exhibits the validity of test items (shown in Table 3(a)) and the Q matrix (shown in Table 3(b)). 

The psychometric properties of the administered test were studied with the classical test theory as well 

as the item response theory and the analyses run by both methods provided evidence regarding the 

test’s reliability and the items’ validity. Once these findings are considered, it seems that the findings 

on the classification determined by the DINA model were highly valid measurements.  

The second dimension of the study investigated the relationship between metacognitive 

monitoring, which refers to one’s awareness of the correctness of their responses, and mathematical 

abilities. In many studies of research, metacognition is contained under the topic of higher-order 

thinking abilities (e.g., Brookhart, 2010; Conklin, 2012; Schraw & Robinson, 2011; Williams, 2003). The 
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monitoring performance of those who showed the “reasoning and developing strategy” ability in 

particular among the four abilities determined in the study and those who did not show this specific 

ability differed significantly from each other. Similar results were also obtained in previous research 

(see also, Kramarski & Mevarech, 2003; Schneider & Ardelt, 2010). For instance, one study of Kramarski 

and Maverech (2003) who studied 8th-graders showed that the students who were thought with 

cooperative learning together with the metacognitive training and the students who were thought with 

individual learning along with the metacognitive training were significantly more successful at graphic 

construction as well as at metacognitive knowledge performance than those who studied the same 

material with the individual learning.  

The current finding that the ability of reasoning and developing strategy is highly related to the 

metacognitive monitoring performance seems in line with, for instance, the model of Koriat and 

Goldsmith (1996) which has been utilized by gradually more researchers in the literature. According to 

this framework model, entitled “strategical regulation of memory accuracy”, Koriat and Goldsmith 

suggest the following. Participants may develop a metacognitive strategy to render their responses be 

composed of correct ones only when a free-report method is used to answer the questions at a given 

test (that is, the participants are asked to report all of the correct answers only that they know). For this 

strategy, let us consider a participant who is taken to a free-report test after studying a 20-item word list 

and, say, this participant, tagged as participant A, reports 12 words only. Say, again, eight words among 

these 12 words reported are remembered and reported correctly. Another participant, now tagged as 

participant B, reports eight words for the same studied list; however, say, six of the words out of these 

eight words reported are correct. According to Koriat and Goldsmith, despite that the participant B 

might have performed a lower “quantity performance” than the participant A (in other words, reported 

a lower number of correct responses [6] out of the total number of items studied [20]), the participant B 

could strategically increase the level of their “accuracy performance”. That is, the participant B could 

increase their accuracy performance by reporting less. The “quantity performance” that can be 

calculated easily with the model is the rate of the number of correct responses out of the total number 

of all possible correct responses (for this example, it is the total number of the words in the list). 

Therefore, the quantity performance of participant A is .40 (8/20) and of participant B is .30 (6/20). The 

accuracy performance of participant A, which is calculated as the rate of the total number of correct 

responses out the total number of responses reported, is .66 (8/12) and of the participant B is .75 (6/8). In 

short, one of the participants (i.e., the participant B) develops a metacognitive strategy by reporting 

fewer responses in the free-report test and implementing this strategy via inserting a higher level of 

response criterion (i.e., not reporting any word that comes to their minds regardless of whether it is a 

correct or an incorrect one) and/or not recognizing the correctness of the remembered words well 

enough as the other participant. Therefore, despite having a lower number of words that were reported, 

this participant can regulate their memory accuracy “by reporting a higher number of correct answers 

among all of the answers reported”. It seems herein so critical that the present study showed the ability 

of “reasoning and developing strategy” is significantly related to the metacognitive monitoring 

performance, which is also parallel to the Koriat and Goldsmith’s model in the way that this very ability 

is a regulation activity implemented strategically and is completely a high-order memory performance. 

The findings of the study showed that the ability of reasoning and developing strategy rather than the 

abilities of communication and association, mathematization, and using symbolic and technical 

language are directly and significantly linked with one’s ability to discriminate correct and incorrect 

responses, seeming parallel to the Koriat and Goldsmith’s arguments. In this vein, the findings on which 

ability or abilities that were detected by CDM are particularly related to the monitoring performance 

that was calculated with the SDT in the current study seems in line with the model of Koriat and 

Goldsmith on the strategical regulation of memory accuracy.  
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Although there may exist a hot debate between Higham (2002) and Koriat and Goldsmit (1996) 

regarding which calculations are better at measuring the metacognitive monitoring performance (see 

also, Higham, 2011), the findings of the current study imply that the metacognitive monitoring and 

strategical regulation are highly interlinked abilities. Despite the arguments on which method, type-2 

SDT suggested by Higham or the method proposed by Koriat and Goldsmith, would be better at 

measuring the “memory accuracy”, both of the methods aim at measuring basically the same ability. 

The uniqueness of the present study, however, appears in the way that it reveals the latent abilities that 

can be closely related to the monitoring ability, calculated by the type-2 SDT method of Higham (2002), 

via detecting these possible abilities measured by the questions’ contents (e.g., “reasoning and 

developing strategy”) and with the help of latent class analysis (e.g., CDM). The question, however, 

asking why showing a better ability of reasoning and developing strategy is not resulted by having a 

high monitoring ability may be raised. As a response to this possible question and based on the findings 

and the implications we gathered in this study, we believe that the metacognitive monitoring ability is 

an ability that is composed of various sub-abilities. Therefore, it is highly likely that the ability to 

discriminate correct responses from among the incorrect ones is possibly acquired only after one has 

the abilities of reasoning and/or developing a memory strategy as sub-abilities. The first reason for this 

proposal is that metacognitive monitoring seems to be considered as a holistic (i.e., a general) ability in 

the related literature. Additionally, it is not clear as to why some people are good at this ability yet some 

others are not. The research that investigates the cognitive changes with aging, in particular, appear as 

mainly the correlational studies, unlike the current study that used hypothesis testing. To better answer 

the above-mentioned question with different experimental designs, the future research may, for 

instance, consider comparing the monitoring performance of the students who are trained to gain the 

ability to develop strategy with a control group of students which thereby could provide evidence on 

the direct effect of developing strategy ability on monitoring. It also seems critical for the prospective 

research to reveal various other sub-abilities that might be related to the monitoring performance and 

investigate and to investigate monitoring ability at other PISA tests, such as science and language, and 

among other age groups.  

Besides the above-mentioned suggestions, the current study has some limitations. First, the 

study was planned to be run with a test that was developed to measure higher-order thinking abilities 

of the 6th-graders at mathematics. Therefore, conducting the same study with a similar test that should 

now be developed for more fundamental features is important. The comparison of different approaches 

existing for the CDM models is also critical to expand the related literature. It can also be stated that 

that increasing the sample size, rearranging the test duration, varying the subjects and the grade levels 

in such a study that simultaneously used two simultaneous, which were relatively recent for cognitive 

psychology and psychometry, may contribute to the literature even further.      

To summarize, the findings of the current study provide a piece of cross-validation evidence on 

the validity of the classification model established by the CDM. It is not only the statistical evidence but 

also the rational evidence that is needed to be sought after to validate the models constructed 

particularly in the studies that use the latent class analyses. The current findings reveal rare empirical 

evidence on the rational validity of the CDM classifications. Therefore, it is believed that this study 

would potentially be a reference study for prospective research on this subject. Lastly, because CDM 

models are based on the fitness between the model and the data and the studies on the measurement 

validity are based on relative criteria, which thereby reveal some results that cannot be assessed with 

an absolute criterion, it is herein proposed that the models’ utilization fields could be expanded once 

the psychological construct and the psychometrical findings support each other in the model-and-data 

fitness. 
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